Feasibility of Gene Therapy for Friedreich Ataxia Associated Cardiomyopathy in Non-Human Primates: Evaluation of Delivery Route, Biodistribution and Expression Following AAVRh.10-hFXN Administration

Brahim Belbellaa¹, Virginie Bonnamain¹, Stephen Kaminsky², Dolan Sondhi², Jonathan Rosenberg², Karen Kozarsky³, Hélène Puccio⁴, Ronald G. Crystal², Mehdi Gasmi¹.

¹ Adverum Biotechnologies Inc., Menlo Park, California, USA ² Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA ³ SwanBio Therapeutics, Bala-Cynwyd, Pennsylvania, USA. ⁴Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, Illkirch, France. Disclosure : BB, HP, RGC and MG have equity in Adverum Biotechnologies Inc.

OBJECTIVES AND STUDY DESIGN

BACKGROUND

Friedreich ataxia (FA) is a rare autosomal recessive disease (prevalence 1-9/100,000) characterized mainly by spinocerebellar and sensory ataxia, as well as hypertrophic cardiomyopathy which is the main cause of premature death in FA patients. To date, no treatment exists for stopping or slowing the progression of FA cardiomyopathy.

Most of FA patients (95%) are affected by a non-coding mutation in the first intron of the Fxn gene, characterized by the expansion of triple-nucleotide repeats (GAA) and resulting in the transcription silencing of Fxn and FXN deficiency (between 5 to 30% of normal protein level).

Frataxin (FXN) is a ubiquitous mitochondrial protein, involved in ironsulfur cluster biosynthesis, which are inorganic cofactors important to many enzymes, proteins and biological functions. FXN deficiency results in mitochondrial and bioenergetic impairment, iron metabolism dysregulation and mitochondria overload, and eventually cellular dysfunction and/or cell death. FXN deficiency affects more severely cardiomyocytes, sensory neurons and neurons in the cerebellum and dentate nucleus.

Importantly, the parents of FA patients are most often asymptomatic heterozygote carriers, expressing around half the normal FXN protein level. This suggest that a partial increase of the cellular level in FXN could be therapeutic.

Previously, we demonstrated the therapeutic proof-of-concept of AAV-mediated cardiac gene therapy in the Mck Fxn knock-out mouse model (Perdomini and Belbellaa et al 2014 Nat Med). In this Mck model, we demonstrated that the re-expression of FXN could prevent and reverse the cardiac phenotype, which was driven by the normalization of the Fe-S biosynthesis and activity of the Fe-S enzymes, the correction of iron metabolism and mitochondria bioenergetics.

In a dose response study, we have demonstrated subsequently the correlation between cardiac vector biodistribution and the amplitude of the functional rescue (Belbellaa et al 2018 Hum Mol Gen). Full correction of the heart function and hypertrophy is achieved when half the cardiomyocytes are transduced with AAVRh.10-hFXN-HA vector and express FXN levels as low as 57% the endogenous level.

More recently, we showed that FXN overexpression is well tolerated when below 10-20-fold the normal endogenous level in WT and Mck mice, but toxic for mitochondria and cardiomyocytes when higher (Belbellaa et al 2019 manuscript submitted). All together, these studies have defined the therapeutic thresholds and index for cardiac gene therapy in FA mouse models.

Objectives: To determine the optimal route and dose of administration of AAVRh.10-hFXN vector, in adult NHP, which results in heart vector biodistribution and expression in the heart, at levels predicted to be therapeutic.

Vector design: Optimization of the vector construct at the transcription and translation levels to accommodate for the lower vector expression in NHP compared to mouse models. The AAVRh.10-hFXN was manufacture in HEK293 system using the triple transfection method.

Experimental design: Three groups of adult cynomolgus monkey, seronegative for AAVRh.10, received the vector either by saphenous-intravenous (i.v.) infusion (~6x10¹²vg/kg, n=3), retrograde coronary infusion (RCI) through the coronary sinus (1x10¹³vg/kg, n=3) or directly by multiple epicardial injections (Ep) (2 sites; 2x10¹²vg each in 65-125µL volume, n=3).

Dosing		Ļ				
Anti-AAVRh.10 antibodies	Ļ	Ļ	Ļ	1	BIOANALYTICALS	
Cell blood count Blood chemistry and biomarkers		ļ	l l	l l	 Vector biodistribution analyzed by qPCR Heart: left and right ventricles , septum, left and Peripheral and major organs 	l right atria
Termination		•			For the i.v. injected group only, FXN protein levels in ELISA assay to quantify FXN level	the heart
					 Comparison to normal mouse, NHP and human WB analysis of FXN forms, i.e precursor, intermed 	levels diary and mature

In-life assessment of tolerability for three routes of vector administration

No functional cardiotoxicity following AAVRh.10-hFXN vector administration

↔ NHP i.v. group * NHP epicardial group Retrograde infusion group Echocardiography analysis of left ventricle (LV): \succ LV shortening fraction and stroke volume. Data reported as mean±SD. Similar results for LV diameters at endsystole/diastole, septum thickness, LV anterior wall thickness (data not shown)

Normal body weight, heart rate, blood pressure.

Similar humoral response against AAVRh.10 for all delivery routes

I.V. injected NHP: AAVRh.10 vector biodistribution analyzed by Taqman qPCR

Mapping of the vector distribution in the heart

NHP hearts were dissected into five anatomical subregions: left and right atria and ventricles, and septum. Each subregion was further subsampled into 1cm square tissue pieces, as illustrated below. The vector copies number (VCN) was quantified by qPCR, in a representative numbers of samples, and graphed below.

t ventricle disposed on dissection g

RESULTS

Peripheral organs biodistribution

The VCN was quantified by qPCR in major organs of interest.

ADVERUM

AAVRh.10-hFXN vector DNA was detected throughout the heart of all i.v.-injected NHP, at levels ranging mostly between 5 to 20 vector copies per diploid genome. This is well beyond the predicted therapeutic threshold identified in the proof-of-concept and dose-response mouse studies. However, i.v. delivery of AAVRh.10-hFXN does not result in meaningful vector biodistribution in the brain, where FXN deficiency leads to the ataxia phenotype.

I.V. injected NHP: cardiac FXN protein level analyzed with ELISA assay

Average FXN protein tissue concentration ([FXN]) throughout the heart

Average [FXN] in NHP heart and toxic levels

> Retrograde and epicardial injections results in transient increase in inflammatory cells and fibrinogen blood concentrations. ▶ For all routes, normal hematocrit (MCV, MHC, MCHC, platelets), coagulation (APTT, PT) and blood chemistry (K⁺, Cl⁻, Ca²⁺, PO4⁻³).

Biomarkers of heart, liver and kidney injury and metabolism

ELISA assay analysis of FXN tissue concentration ([hFXN]) from total heart proteins extracts, normalized to total protein concentration and reported as mean±SD. Commercial human heart total protein: Zyagen HT-801 and Novus Biologicals NB820-59217. Commercial cynomolgus heart total protein: Zyagen, KT-801 Partial cross-reactivity with endogenous monkey FXN, with background level at 9ng/mg in naïve heart samples. Detectable increase of FXN protein level throughout the heart, at levels close to human normal level and far below the predicted toxic overexpression levels.

I.V. injected NHP: hFXN protein mitochondrial import and processing

Western-blot analysis of FXN expression and processing from intermediary to mature form

Cynomolgus Rh10-hFXN i.v.-injected Cynomolgus naïve heart Human heart

Biomarkers of liver injury, ALT and AST, transiently increased in epicardial and retrograde groups, but not for γ-GT, ALP, ALB, Glbn Biomarkers of kidney injury (creatinine, total protein, urea-nitrogen) normal in all groups

> Normal blood concentration of glucose, triglycerides, cholesterol.

4-20% SDS-PAGE, 15µg total protein per well, immunoblotting anti-FXN (IGBMC, 4F9 monoclonal, 1/10,000) and anti-GAPDH (SantaCruz, Rabbit polyclonal 1/3,000). NHP i.v. injected with AAVRh.10-hFXN display detectable increase of FXN protein levels, with some accumulation of FXN intermediary form but not precursor. Normal endogenous level of FXN in the heart of naïve NHP is similar to human heart, while heart from C57/B6J WT mice display much higher levels of FXN.

CONCLUSIONS

AAVRh.10-hFXN intravenous (i.v.) injection in adult cynomolgus monkey appears to be well tolerated at 21 days post-administration.

I.V. administration safety profile at 21 days seems overall preferable to retrograde coronary or epicardial injection routes.

I.V. dose of 6x10¹²vg/kg achieved widespread vector distribution in the heart, at levels predicted to be therapeutic, but not in the CNS.

Increased FXN level correctly targeted to the mitochondria throughout the heart, at safe levels close to normal human level.

• Overall, i.v. administration of AAVRh.10-hFXN at the dose of ~6x10¹²vg/kg would be the route and dose of choice to develop future

gene therapy protocol to address Friedreich ataxia cardiomyopathy.